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Abstract

Document-level Relation Extraction (DocRE)
is a more challenging task compared to its
sentence-level counterpart. It aims to ex-
tract relations from multiple sentences at once.
In this paper, we propose a semi-supervised
framework for DocRE with three novel com-
ponents. Firstly, we use an axial attention mod-
ule for learning the interdependency among
entity-pairs, which improves the performance
on two-hop relations. Secondly, we propose
an adaptive focal loss to tackle the class im-
balance problem of DocRE. Lastly, we use
knowledge distillation to overcome the differ-
ences between human annotated data and dis-
tantly supervised data. We conducted exper-
iments on two DocRE datasets. Our model
consistently outperforms strong baselines and
its performance exceeds the previous SOTA by
1.36 F1 and 1.46 Ign_F1 score on the DocRED
leaderboard.1

1 Introduction

The problem of document-level relation extraction2

(DocRE) is highly important for information extrac-
tion and NLP research. The DocRE task aims to
extract relations among multiple entities within a
document. The DocRE task is more challenging
than its sentence-level counterpart in the following
aspects: (1) The complexity of DocRE increases
quadratically with the number of entities. If a doc-
ument contains n entities, classification decisions
must be made on n(n− 1) entity pairs and most of
them do not contain any relation. (2) Aside from
the imbalance of positive and negative examples,
the distribution of relation types for the positive
entity pairs is also highly imbalanced. Considering

∗† Qingyu Tan is under the Joint PhD Program between
Alibaba and National University of Singapore.

†† Corresponding author
1Our code and data are available at https://github.

com/tonytan48/KD-DocRE
2In this work, the task of relation extraction presumes that

entities are given.

the DocRED (Yao et al., 2019) dataset as an exam-
ple, there are 96 relation types in total, where the
top 10 relations take up 59.4% of all the relation
labels. This imbalance significantly increases the
difficulty of the document-level RE task.

Most existing approaches of DocRE leverage
dependency information to construct a document-
level graph (Zeng et al., 2021; Zeng et al., 2020),
and then use graph neural networks for reason-
ing. Another popular strand of this field uses
transformer-only (Vaswani et al., 2017) architec-
ture (Zhou et al., 2021; Xu et al., 2021; Zhang et al.,
2021). Such models are able to achieve state-of-the-
art performance without explicit graph reasoning,
showing that pre-trained language models (PrLMs)
are able to implicitly capture long-distance relation-
ships. However, there are three limitations of the
existing DocRE methods. Firstly, existing meth-
ods mainly focus on the syntactic features from
PrLMs while neglecting the interactions between
entity pairs. Zhang et al. (2021) and Li et al. (2021)
have used CNN structure to encode the interaction
between entity pairs, but CNN structure cannot
capture all the elements within the two-hop reason-
ing paths. Secondly, there is no prior work that
explicitly tackles the class-imbalance problem for
DocRE. Existing works (Zhou et al., 2021; Zhang
et al., 2021; Zeng et al., 2020) only focus on thresh-
old learning for balancing the positive and negative
examples, but the class-imbalance problem within
positive examples is not addressed. Lastly, there
are very few works discussing the method of adapt-
ing distantly supervised data for the DocRE task.
Xu et al. (2021) has shown that distantly super-
vised data is able to improve the performance of
document-level relation extraction. However, it
only uses the distantly supervised data to pre-train
the RE model in a naive manner.

To overcome the limitations of existing works,
we propose a semi-supervised learning framework
for document-level relation extraction. Firstly, to
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Figure 1: Model architecture of our DocRE system. We show the axial attention region for the entity
pair (e3, e6).

improve the reasoning for two-hop relations, we
propose to use an axial attention module as fea-
ture extractor. This module enables us to attend
to elements that are within two-hop logical paths
and capture the interdependency among the rela-
tion triplets. Secondly, we propose Adaptive Focal
Loss to address the imbalanced label distribution
problem. The proposed loss function encourages
the long-tail classes to contribute more to the over-
all loss. Lastly, we use knowledge distillation to
overcome the differences between the annotated
data and the distantly supervised data. Specifically,
we first train a teacher model with a small amount
of human annotated data. The teacher model will
then be used to generate predictions on a large
amount of distantly supervised data. The generated
predictions are used as soft labels for pre-training
our student model. Finally, the pre-trained student
model is further fine-tuned on the human annotated
data.

We conducted experiments on two datasets – the
DocRED (Yao et al., 2019) dataset and the Ha-
cRED (Cheng et al., 2021) dataset. Experimental
results show that our model consistently outper-
forms competitive baselines. Moreover, our model
significantly outperforms the existing state-of-the-
art SSAN-Adapt (Xu et al., 2021) on the DocRED
leaderboard by 1.36 in F1 score and 1.46 in Ign_F1
score.3 Besides, we provide a thorough ablation
study and error analysis to identify the bottleneck
of our method.

3Refer to https://competitions.codalab.
org/competitions/20717, where our model is named
KD-Roberta.

2 Methodology

2.1 Problem Formulation

In this section, we describe the task formulation
of document-level relation classification. Given a
document D that contains a set of entities {ei}ni=1,
the document-level relation extraction task is to
predict the relation types between entity pairs
(es, eo)s,o∈{1...n},s 6=o, where the subscripts of es
and eo refer to subject and object. The set of rela-
tions is defined as R∪ {NR}, where NR stands for
no relation. An entity may occur multiple times
in a document, thus for each entity ei, there can
be multiple mentions {mi

j}
Nei
j=1. If no relation ex-

ists between the entities in the pair (es, eo), it will
be labeled as NR. During test time, the relation
labels for all entity pairs (es, eo)s,o∈{1...n},s 6=o will
be predicted. Essentially, this is a multi-label classi-
fication problem, as there can be multiple relations
between es and eo.

2.2 Model Architecture

As shown in Figure 1, our semi-supervised learn-
ing framework mainly consists of three parts: (1)
representation learning; (2) adaptive focal loss; and
(3) knowledge distillation for distant supervision
pretraining. For representation learning, we first
extract the contextual representation for each entity-
pair by a pre-trained language model. The entity
pair representations will be further enhanced by
the axial attention module, which will encode the
inter-dependent information between entity pairs.
We then use a feedforward neural network (FFN)
classifier to obtain the logits and compute their
losses. We use our proposed adaptive focal loss to
better learn from long-tail classes. Finally, we use

https://competitions.codalab.org/competitions/20717
https://competitions.codalab.org/competitions/20717


knowledge distillation to overcome the differences
between human annotated data and distantly super-
vised data. Specifically, we train a teacher model
with the annotated data and use its output as soft
labels. We then pre-train a student model based
on the soft labels and the distant labels. The pre-
trained student model will be fine-tuned again with
the annotated data. We will describe the details for
each part in the following sections.

2.2.1 Representation Learning
Entity Representation We use a pretrained lan-
guage model as the encoder. For a document D
of length l, we have D = [xt]

l
t=1, where xt is the

word at location t. Following prior works for re-
lation classification, we use special token markers
to represent entities. The entity mentions will be
marked by a special token "*" at the start and end
position. We then use a pre-trained language model
(PrLM) to obtain the contextualized embeddings
H of this document.

H = PrLM([x1, ..., xl]) = [h1, ..., hl]) (1)

where H ∈ Rl×d and d is the hidden dimension
of the PrLM. If the document length exceeds the
maximum position of the PrLM, the document will
be encoded as multiple overlapping chunks, and
the contextualized embeddings of the overlapping
chunks will be averaged. We take the embedding of
the special token "*" at the start of the mention as
its embedding, which is denoted as hmj . Then, for

each entity ei with mentions {mi
j}

Nei
j=1, where Nei

is the number of mentions for entity ei, its global
representation is obtained by logsumexp pooling:

hei = log

Nei∑
j=1

exp(hmj ) (2)

where hei ∈ Rd is the aggregated feature of ei.

Context-enhanced Entity Representation As
prior works (Xu et al., 2021; Peng et al., 2020)
have shown that contextual information is crucial
for the relation classification task, our model also
adapts contextual pooling method from Zhou et al.
(2021). For each entity ei, we first aggregate the
attention output for its mentions by mean pooling
Aei =

∑Nei
j=1(amj ), where amj ∈ RH×l is the the

self-attention weight at the position of mention mj ,
H is the number of attention heads, and l is the doc-
ument length. Then the context query is calculated

as:

q(s,o) =
H∑
i=1

(Ai
es ◦A

i
eo) (3)

c(s,o) = Hᵀq(s,o) (4)

where Aes ∈ RH×l is the aggregated attention
output for entity es, likewise for eo. q(s,o) ∈ Rl

is the mean-pooled attention weight for entity pair
(es, eo) and H ∈ Rl×d is the contextual embedding
of the whole document. Then the context vector
c(s,o) ∈ Rd is fused with the entity representations.

zs = tanh(Wshes +Wcc
(s,o)) (5)

where zs ∈ Rd is the context-enhanced representa-
tion of subject s for entity pair (es, eo). We obtain
the object representation zo in the same manner.

Entity Pair Representation Following Zhou
et al. (2021), we use a grouped bilinear function for
feature combination. The entity embedding zs will
first will be split into k equal-sized groups, such
that zs = [z1s , z

2
s , ..., z

k
s ]. We perform the same

splitting for zo. The value g(s,o)i at each dimension
of our entity pair representation is obtained by:

g
(s,o)
i =

k∑
j=1

(zjᵀs W
j
giz

j
o) + bi

g(s,o) = [g
(s,o)
1 , g

(s,o)
2 , ..., g

(s,o)
d ]

(6)

where W j
gi ∈ Rd/k×d/k, for i = 1, ..., d, j =

1, ..., k, is the weight matrix for dimension i. bi
is a scalar bias of dimension i. g(s,o) ∈ Rd is our
final entity pair representation.

For a given documentD with n entities, we need
to classify n(n− 1) number of entity pair permu-
tations. To help us encode all the entity pairs and
their positions, we used an Rn×n×d matrix G to
represent all the entity pairs of document D, and
the diagonal of the n× n index is neglected during
training and inference.

Axial Attention-Enhanced Entity Pair Repre-
sentation Instead of using only head and tail em-
bedding for relation classification, we propose to
use two-hop attention to encode the axial neigh-
boring information of each entity pair (es, eo) rep-
resentation. Although there are prior works that
use Convolution Neural Networks (CNNs) to en-
code the neighbor information for relation classi-
fication (Zhang et al., 2021), we believe that at-
tending to the axial elements is more effective and



intuitive. Given an n × n entity table, for entity
pair (es, eo), attending to its axial elements cor-
responds to attending to elements that are either
(es, ei) or (ei, eo). That is, if a two-hop relation
(es, eo) can be dissected into a path (es, ei) and
(ei, eo), then the most informative neighbors for
classifying (es, eo) are the one-hop candidates that
share es or eo with this entity pair. The axial at-
tention is simply computed by self-attention along
the height axis and the width axis, and each com-
putation along the axes is followed by a residual
connection. For the cell (es, eo), we have:

r(s,o)w =r
(s,o)
h +

∑
p∈1..n

softmaxp(q
T
(s,o)k(s,p))v(s,p)

r
(s,o)
h =g(s,o)+

∑
p∈1...n

softmaxp(q
T
(s,o)k(p,o))v(p,o)

(7)

where we denote query q(i,j) = WQg
(i,j), key

k(i,j) = WKg
(i,j), and value v(i,j) = WV g

(i,j),
which are all linear projections of the entity pair
representation g at position (i, j). WQ ∈ Rd×d,
WK ∈ Rd×d, and WV ∈ Rd×d are all learnable
weight matrices. The output of the axial attention
module is r(s,o)w ∈ Rd. The softmaxp function de-
notes a softmax function that applies to all possible
p = (i, j) positions. The formulation of this mech-
anism resembles Wang et al. (2020). However, our
motivation is different, as Wang et al. (2020) aim
to use this mechanism to reduce the computational
complexity of semantic segmentation, whereas our
motivation is to attend to the one-hop neighbors for
the two-hop relation triplets.

2.2.2 Adaptive Focal Loss
Finally, we have a linear layer for predicting rela-
tions:

l(s,o) = Wlr
(s,o)
w + bl (8)

where l(s,o) ∈ Rc denotes the output logits for all
relations, Wl ∈ Rd×c is the weight matrix that
maps the relation embedding to the logit of each
class and c is the number of classes.

Our relation extraction problem is essentially a
multi-label classification problem. Traditionally,
binary cross-entropy (BCE) loss is used to tackle
this problem. However, this method relies on a
global probability threshold for inference. Recently
Adaptive Thresholding Loss (ATL, Zhou et al.,
2021) has been proposed for multi-label classifica-
tion. Instead of using a global probability threshold
for all examples, ATL introduced a special class
TH as the adaptive threshold value for each exam-
ple. For each entity pair (es, eo), the classes whose

logits are larger than the TH class logit will be
predicted as positive classes, and the rest will be
predicted as negative classes.

We propose Adaptive Focal Loss (AFL) as an
enhancement to ATL for long-tail classes. Our loss
consists of two parts, the first part is for positive
classes and the second part is for negative classes.
During training, the label space is divided into two
subsets: positive class subset PT and negative class
subset NT . The positive class subset PT contains
the relations that exist in entity pair (es, eo), and if
there is no relation between (es, eo), PT is empty
(PT = ∅). The negative subset NT , on the other
hand, contains the relation classes that do not be-
long to the positive classes, NT = R \ PT . The
probability of each positive class is computed as:

P (ri|es, eo) =
exp(l

(s,o)
ri )

exp(l
(s,o)
ri ) + exp(l

(s,o)
TH )

(9)

where the logit of ri is ranked with the logit of
threshold class TH individually. This is different
from the original ATL, where all positive logits
are ranked together with a softmax function. For
simplicity, P (ri|es, eo) is denoted as P (ri) in this
section, because we are only discussing (es, eo).
For the negative classes, we use their logits to com-
pute the probability of the TH class:

P (rTH |es, eo) =
exp(l

(s,o)
rTH )∑

rj∈NT∪{TH}
exp(l

(s,o)
rj )

(10)

Similarly, P (rTH |es, eo) is referred to as P (rTH)
in the remainder of this section. Since the distri-
bution of the positive labels is highly imbalanced,
we leverage the idea of focal loss (Lin et al., 2017)
for balancing the logits of the positive classes. We
have our loss function as:

LRE=
∑
ri∈PT

(1−P (ri))
γ log(P (ri))+log(P (rTH)) (11)

where γ is a hyper-parameter. Our loss is designed
to focus more on the low-confidence classes. If
P (ri) is low, the loss contribution from the rele-
vant class will be higher, which enables a better
optimization for long-tail classes.

2.2.3 Knowledge Distillation for Distant
Supervison

In this section, we describe how we utilize the dis-
tantly supervised data in a more effective manner.
The distantly supervised data included in the Do-
cRed dataset (Yao et al., 2019) was obtained by



performing entity linking on the Wikidata Knowl-
edge Base (Vrandečić and Krötzsch, 2014) and the
Wikipedia data dump. It is shown that pre-training
from the distantly supervised data is beneficial for
document-level relation extraction (Xu et al., 2021).
However, prior work only adapts the distantly su-
pervised data in a naive manner. The key chal-
lenge for the distant supervision adaptation is to
overcome the differences between probability dis-
tributions of the distantly supervised data and the
human annotated data. We compare two strategies
for adapting the distantly supervised data.

Naive Adaptation Adopting from (Xu et al.,
2021), this method first pretrains the model with
the distantly supervised data with the relation ex-
traction loss LRE (Eqn. 11), and then the model is
fine-tuned on the human-annotated data with the
same objective. We denote this method as Naive
Adaptation (NA).

Knowledge Distillation To further utilize the an-
notated data, we use a relation classification model
trained on the human-annotated data (#Train in Ta-
ble 1) as the teacher model. The teacher model is
used to generate soft labels on the distantly super-
vised data. Specifically, the distantly supervised
data is fed into the teacher model and the predicted
logits will be the soft labels used for training the
student model. The student model has the same
configuration as the teacher model, but is trained
with two signals simultaneously. The first signal
is the supervision from the hard labels of the dis-
tantly supervised data and the second is from the
predicted soft labels. We denote the loss computed
on the hard labels as LRE and the knowledge distil-
lation loss computed on the soft labels as LKD. We
use mean squared error (MSE) as the knowledge
distillation loss function:

LKD =MSE(l
(s,o)
S , l

(s,o)
T ) (12)

where l(s,o)S denotes the predicted logits of the stu-
dent model and l(s,o)T is the prediction of the teacher
model. The student model is further fine-tuned with
human-annotated data (#Train in Table 1) after it
has been pre-trained on the distantly supervised
data. The overall loss of pre-training with distantly
supervised data is computed as:

L = LKD + LRE (13)
We denote this method as KD in our main experi-
mental results section. Besides the MSE loss, we
also compare different adaptation methods, such as

KL-Divergence, in section 3.6.

3 Experiments

Statistics DocRED HacRED
# distant docs 101,873 –
# training docs 3,053 6,231
# dev docs 1,000 1,500
# test docs 1,000 1,500
# relations 97 27
Avg # entities per doc 19.5 10.8
Avg # mentions per entity 1.4 1.2
Avg # relations per doc 12.5 7.4

Table 1: Dataset statistics of the DocRED and HacRED
datasets.

3.1 Dataset Statistics
We evaluated our model on two document-level re-
lation extraction datasets – the DocRED (Yao et al.,
2019) benchmark and the HacRED dataset (Cheng
et al., 2021). DocRED is a crowd-sourced large-
scale document-level relation extraction dataset. It
contains 3,053/1,000/1,000 instances for training,
validation, and test, respectively. HacRED is a Chi-
nese relation extraction dataset that focuses on the
hard cases of relation extraction. It contains 27
hard relations and is split into 6,231/1,500/1,500
instances for training, validation, and test. How-
ever, the test set of HacRED is not released yet. In
this paper, we only provide the results on its dev
set.

3.2 Implementation Details
We implemented our model with the PyTorch ver-
sion of the Huggingface Transformers (Wolf et al.,
2020). For experiments on DocRED, we experi-
mented with Roberta-large (Liu et al., 2019) and
Bert-base (Devlin et al., 2019) as our document
encoder respectively. For experiments on HacRED,
we use XLM-R base (Conneau et al., 2020) as the
document encoder. AdamW (Loshchilov and Hut-
ter, 2019) is used as the optimizer. At the knowl-
edge distillation stage, we trained the model with
the learning rate set to 1e-5 for 2 epochs. Warmup
is applied on the initial 6% steps. The dropout rates
between transformer layers are set to 0.1 and the
maximum gradient norm is clipped at 1.0. Dur-
ing the fine-tuning stage, the learning rate is set
to 1e-6 and we train the model for 10 epochs. We
performed grid search for γ ∈ [0, 0.5, 1.0, 1.5, 2.0]
and set it to 0.5. Our model is trained on a single



Dev Test
w/o Distant Supervision Ign_F1 F1 Ign_F1 F1
Two-stage-B-b 56.67 58.83 56.47 58.69
ATLOP-B-b 59.22±0.15 61.09±0.16 59.31 61.30
SIRE-B-b 59.82 61.60 60.18 62.05
DocuNet-B-b 59.86±0.13 61.83±0.19 59.93 61.86
Ours-B-b 60.08±0.11 62.03±0.18 60.04 62.08
Coref-Rb-l 57.35 59.43 57.9 60.25
SSAN-Rb-l 59.40 61.42 60.25 62.08
GAIN-B-l 60.87 63.09 60.31 62.76
ATLOP-Rb-l 61.32±0.14 63.18±0.19 61.39 63.40
DocuNet-Rb-l 62.23±0.12 64.12±0.14 62.39 64.55
DocuNet-Rb-l∗ 61.56±0.14 63.58±0.17 61.79 63.73
Ours-Rb-l 62.16±0.10 64.19±0.16 62.57 64.28
with Distant Supervision Ign_F1 F1 Ign_F1 F1
ATLOP-NA-Rb-l∗ 63.41±0.15 65.33±0.18 63.54 65.47
DocuNet-NA-Rb-l∗ 63.26±0.17 65.21±0.19 63.29 65.44
SSAN-NA-Rb-l 63.76 65.69 63.78 65.92
Ours-NA-B-b 62.18±0.12 64.17±0.16 61.77 64.12
Ours-KD-B-b 62.62±0.16 64.81±0.13 62.56 64.76
Ours-NA-Rb-l 63.38±0.11 65.64±0.17 63.63 65.71
Ours-KD-Rb-l 65.27±0.09 67.12±0.14 65.24 67.28

Table 2: Experimental results for the DocRED dataset. The reported metrics are F1 score and Ign_F1. We report the
average of five random runs for the development set and the best checkpoint is used for the leaderboard submission
for the test results. Results with ∗ are obtained by our reproduction.

NVIDIA V100 GPU with 32 GB memory. The
main evaluation metrics are Ign_F1 and F1 score
following Yao et al. (2019), where Ign_F1 refers to
the F1 score that ignores the triples that appear in
the annotated training data.

3.3 Compared Methods

We denote Bert-base and Bert-large encoders as B-
b and B-l. The Roberta-large model is denoted as
Rb-l. We compare our model with the state-of-the-
art systems on the DocRED leaderboard as well as
strong baselines by our own implementation. They
are the following models: Wang et al. (2019) has
proposed to fine-tune BERT for document-level
RE with a two-step process (Two-stage-B-b). The
Bert model needs to classify whether the two en-
tities have relation and then classify their relation
if the first step is positive. The Coref-Rb-l (Ye
et al., 2020) uses a co-reference module to aggre-
gate the mention representations of the same en-
tity. The SSAN (Xu et al., 2021) model utilizes co-
occurrence information between entity mentions,
leverages distantly supervised data for pretraining,
and achieves the state of the art on the DocRED
leaderboard. Since their best model SSAN-Adapt

is equivalent to naive adaptation in our work, we
denote it as SSAN-NA-Rb-l in our experiments.
The GAIN (Zeng et al., 2020) model adds a graph
neural network on top of a pre-trained language
model, constructs a document-level graph for each
example, and uses the graphical structure to extract
relations. SIRE (Zeng et al., 2021) uses two en-
coders for different types of relation — a sentence-
level encoder to extract intra-sentence relations and
a document encoder to extract inter-sentence rela-
tions. ATLOP (Zhou et al., 2021) is purely based
on the transformer architecture and a novel adap-
tive thresholding loss to deal with the multi-label
problem for DocRE. Besides, it also fuses the con-
textual information with the aggregated attention
weights for each entity. The DocuNet (Zhang et al.,
2021) model treats the relation extraction task in
a similar way as semantic segmentation in com-
puter vision. We also conducted an experiment that
pretrained the ATLOP-Rb-l model with distantly
supervised data, as this model is the best model by
our reproduction.



3.4 Main Results
Our main results for the DocRED dataset are shown
in Table 2. Knowledge distillation is able to sig-
nificantly improve the performance of our model.
Ours-KD-Rb-l achieves the best single-model per-
formance of 67.28 test F1. Our best model signif-
icantly ourperforms the previous state of the art
SSAN-NA-Rb-l by 1.36 on test F1 and 1.46 on
test Ign_F1. As of 11th Nov 2021, our best model
achieves the highest scores on the DocRED leader-
board.

P R F1
GAIN∗ 73.38 80.07 76.09
ATLOP∗ 76.97 78.29 77.63
Ours 78.53 78.96 78.75

Table 3: Experimental results on HacRED dev set. Re-
sults with ∗ are implemented by us. All experiments
used XLM-R-base as the encoder.

The experiment results for the HacRED dataset
are shown in Table 3. The main difference of our
method with the ATLOP baseline is the Adaptive
Focal Loss and the Axial Attention Module. Our
proposed method is able to exceed the ATLOP base-
line by 1.12 F1. Besides the performance of the
models, it is worth noting that for each method,
the absolute performance of HacRED is signifi-
cantly higher than its performance on DocRED.
This is counter-intuitive as HacRED focuses on the
hard relations whereas DocRED is more general.
This can be caused by the following: 1) The hu-
man annotated training instances of the HacRED
dataset are significantly more than DocRED, lead-
ing to better generalization performance. 2) Even
though HacRED claims it focuses on the hard cases
for relation extraction, it only has 27 classes, and
the relation type distribution within the HacRED
dataset is more balanced.

3.5 Ablation Study
We first separate our label space into two subsets.
The first subset consists of the 10 most frequent la-
bels, accounting for 59.4% of the positive relations
in the training data. The second subset is denoted
as the long-tail labels, which includes the rest of
the 86 relations (the total label space is 97 and there
is one TH class). Since our Adaptive Focal loss
function is mainly designed for improving the per-
formance on the less frequent classes, we show the
ablation study by frequent and long-tail classes in
Table 4. When we change the AFL loss to con-

Frequent Long-tail Overall
F1 F1 F1

ATLOP-Rb-l 70.93 50.01 63.12
Ours-Rb-l 71.26 51.97 64.19
w/o Axial 70.86 50.77 63.56
w/o AFL w ATL 70.94 50.86 63.67
With Distant Supervision
ATLOP-NA-Rb-l 73.26 52.39 65.33
Ours-KD-Rb-l 74.15 56.51 67.12
w/o Axial 73.52 54.96 66.36
w/o AFL w ATL 73.50 54.73 66.23

Table 4: Experiment results for frequent and long-tail
type relations. Frequent types refer to the most popular
10 relation types, and long-tail relations refer to the rest
of the 86 relations.

ventional Adaptive Thresholding Loss (Zhou et al.,
2021), the overall performance with KD drops by
0.89 F1, and the F1 score for the frequent labels
only drops by 0.65. Meanwhile, the long-tail labels’
F1 drops by 1.78, which is significantly higher than
the drop in overall performance and frequent perfor-
mance. This indicates that our Adaptive Focal Loss
is able to balance the weight of the frequent classes
and infrequent classes. The axial attention module
is also more beneficial for the long-tail classes than
the frequent classes, which shows that our model’s
performance on the frequent classes is saturated.

P R Infer-F1
GAIN-B-b 38.71 59.45 46.89
Ours-Rb-l 42.15 61.56 50.04
w/o Axial 40.26 60.60 48.37

Table 5: Ablation study for the Infer-F1 relation triples
on the development set of DocRED.

We also provide an ablation study on the multi-
hop relations in Table 5. We use the same evalua-
tion method for multi-hop relations as Zeng et al.
(2020). This evaluation method ignores all the one-
hop relation triples. Our axial attention module
effectively improves Infer-F1 by 1.67, while its
improvement for overall performance is only 0.63.

3.6 Comparison of Adaptation Methods

In this section, we directly compare the knowl-
edge adaptation methods on the development set
of DocRED (Table 6). We mainly compare three
methods for adaptation: 1) Naive Adaptation (NA),
2) KDKL knowledge distillation with the KL di-
vergence loss and 3) KDMSE with mean squared
error loss. The adaptation performance on the de-
velopment set is positively correlated with the per-



Distant Adaptation Ign_F1 F1
NA 52.29 54.67
KDKL 53.89 56.97
KDMSE 55.28 57.74
Continue-trained Ign_F1 F1
NA 63.38 65.64
KDKL 64.42 66.24
KDMSE 65.27 67.12

Table 6: Development set performance of different
knowledge adaptation methods for DocRED.

formance of downstream fine-tuning. In the distant
adaptation setting, our best method KDMSE is able
to outperform NA by 3.07 F1 and KDKL by 0.77
F1. Similar performance differences are observed
in the continue-trained setting.

4 Error Analysis

Even though our final model significantly outper-
forms the previous state of the art on the Do-
cRED leaderboard, the absolute performance of
our model still does not match human performance.
In this section, we provide a detailed error analysis
of our model on the development set of DocRED.

Ground Truth

Pr
ed

ic
tio

ns r ∈ R NR

r ∈ R C: 8,273 (51.4%) MR: 3,814 (23.7%)W: 242 (1.5%)
NR MS: 3,761 (23.4%) 380,703

Table 7: Statistics of our error distribution. The final
evaluation score is evaluated on r ∈R triples, hence the
correct predictions of NR are ignored when calculating
the final scores.

We first construct the union of our model’s pre-
dictions and the ground truth triples (without NR
label). Then, we categorize the union into four cat-
egories: (1) Correct (C), where prediction triples
are in the ground truth. (2) Wrong (W), where
the predicted head entity and tail entity are in the
ground truth but the predicted relation is wrong.
(3) Missed (MS), where the model predicts no re-
lation for a pair of head entity and tail entity with
some relation in the ground truth. (4) More (MR),
where the model predicts an extraneous relation for
a pair of head entity and tail entity not related in
the ground truth. From Table 7, we observe that the
error percentage of the W category is very small.
This indicates that for a pair of head entity and tail
entity with some relation in the ground truth, and
when our model predicts that there is a relation

between these two entities, it is able to predict the
correct relation rather accurately. However, we ob-
serve that most of our errors are under the MR and
MS categories, and their counts are about the same.
To better understand the performance bottleneck of
the document-level RE task, we evaluate our model
on a simplified subtask (Table 8). This subtask is
binary classification, i.e., to determine whether two
entities are related or not, and it is denoted as Bi-
nary Labels. In this subtask, we only care about
predicting correctly that there is some relation be-
tween a head entity and a tail entity, but not what
the exact relation is among the 97 relation classes.
The performance on this simplified task is 68.64
F1 score, which is only marginally higher than the
original F1 score of 67.12. This may be due to
incomplete annotation of the two document-level
relation extraction datasets, and we will illustrate
this hypothesis in Figure 2.

P R F1
Binary Labels 68.51 68.78 68.64
Original Labels 67.10 67.13 67.12

Table 8: Performance breakdown on the DocRED dev
set.

“Eivind Bolle ( 13 October 1923 – 10 June 2012 ) was a
Norwegian politician for the Labour Party. He was born
in Hol. He was elected to the Norwegian Parliament from
Nordland in 1973. ... On the local level he was a member
of Hol municipality council from 1959 to 1963 , and later in
Hol ’s successor municipality Vestvågøy. He served as mayor
from 1971 to 1973 , during which term he was also a member
of Nordland county council ..."

More: (Nordland, country, Norwegian), (Vestvågøy, coun-
try, Norwegian),...

Correct: (Labour Party, country, Norwegian), (Hol, coun-
try, Norwegian),...

Figure 2: Example output of our model on the DocRED
dev set.

In Figure 2, we show an example document from
the dev set of DocRED and its predictions. We ob-
serve that many triples in the MR category are fac-
tually correct. That is, some of the pairs of entities
are truly related but are labeled as NR throughout
the dataset. For instance, from the ground truth, we
can see that Labour Party and Hol are all entities
from country Norway. Similarly, Nordland and
Vestvågøy are all in Norway, but their relations
with Norway are not present in the ground truth
triples. Therefore, when our model predicts these
triples, its performance would be unfairly penal-



ized during evaluation. This observation indicates
that there are some incomplete annotations in the
DocRED dataset. However, this is not the focus of
this paper and we would like to leave this as future
work.

5 Related Work

Early works on relation extraction mainly focused
on sentence-level RE (Zhang et al., 2017; Bal-
dini Soares et al., 2019; Peng et al., 2020). How-
ever, prior works have shown that a large number of
relations can only be extracted from multiple sen-
tences (Verga et al., 2018; Yao et al., 2019; Cheng
et al., 2021). Various methods have been pro-
posed to tackle document-level relation extraction
(DocRE). Graph neural networks (GNNs; Scarselli
et al., 2008) have been widely used for the DocRE
task. Quirk and Poon (2017) used words as nodes
and dependency information as edges to construct
document-level graphs. This graph will be used to
extract features for each entity pair. Later works
extended this idea by applying different GNN ar-
chitectures (Peng et al., 2017; Verga et al., 2018;
Christopoulou et al., 2019; Nan et al., 2020; Zhang
et al., 2018; Zeng et al., 2020). In particular, Nan
et al. (2020) proposed the latent stucture refine-
ment (LSR) model, which used structured attention
to induce the document-level graph. Zeng et al.
(2020) constructed the document-level graph by
entity-mention nodes and sentence edges. Besides
the graph-based methods, transformer-only archi-
tectures have also proven to be highly effective for
the DocRE task (Tang et al., 2020; Zhou et al.,
2021). Specifically, Zhou et al. (2021) proposed
adaptive thresholding loss to tackle the multi-label
classification problem in DocRE.

On the other hand, learning from distant super-
vision is another important problem for relation
extraction. Qin et al. (2018) used generative adver-
sarial training for selecting informative examples
and Feng et al. (2018) used reinforcement learning
to achieve the same goal. However, there are no ex-
isting works that jointly learn from annotated data
and distant data. To this end, this paper is the first
to overcome the differences between the human
annotated and distantly supervised data. Moreover,
this paper also tackles the under-explored class im-
balance problem and the two-hop logical reasoning
problem with novel solutions to the shortcomings
of existing approaches.

6 Conclusions

In this paper, we have proposed a novel framework
for document-level relation extraction, based on
knowledge distillation, axial attention, and adap-
tive focal loss. Our proposed method is able to
significantly outperform the previous state of the
art on the DocRED leaderboard. Besides, we also
conducted a thorough ablation study and error anal-
ysis to identify the bottleneck of the document-level
relation extraction task.

7 Acknowledgements

We would like to thank the anonymous reviewers
for their insightful feedback and comments.

References
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey

Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In Proceedings of ACL.

Qiao Cheng, Juntao Liu, Xiaoye Qu, Jin Zhao, Jiaqing
Liang, Zhefeng Wang, Baoxing Huai, Nicholas Jing
Yuan, and Yanghua Xiao. 2021. HacRED: A large-
scale relation extraction dataset toward hard cases in
practical applications. In Findings of ACL.

Fenia Christopoulou, Makoto Miwa, and Sophia Ana-
niadou. 2019. Connecting the dots: Document-level
neural relation extraction with edge-oriented graphs.
In Proceedings of EMNLP.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xi-
aoyan Zhu. 2018. Reinforcement learning for rela-
tion classification from noisy data. In Proceedings
of AAAI.

Jingye Li, Kang Xu, Fei Li, Hao Fei, Yafeng Ren,
and Donghong Ji. 2021. Mrn: A locally and glob-
ally mention-based reasoning network for document-
level relation extraction. In Findings of ACL.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense ob-
ject detection. In Proceedings of ICCV.

https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://aclanthology.org/2021.findings-acl.249
https://aclanthology.org/2021.findings-acl.249
https://aclanthology.org/2021.findings-acl.249
https://aclanthology.org/D19-1498
https://aclanthology.org/D19-1498
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17151/16140
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17151/16140
https://aclanthology.org/2021.findings-acl.117.pdf
https://aclanthology.org/2021.findings-acl.117.pdf
https://aclanthology.org/2021.findings-acl.117.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of
ICLR.

Guoshun Nan, Zhijiang Guo, Ivan Sekulic, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In Proceedings
of ACL.

Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng
Li, Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2020.
Learning from context or names? An empirical
study on neural relation extraction. In Proceedings
of EMNLP.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics.

Pengda Qin, Weiran Xu, and William Yang Wang.
2018. DSGAN: Generative adversarial training for
distant supervision relation extraction. In Proceed-
ings of ACL.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proceedings of EACL.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE Transactions on
Neural Networks.

Hengzhu Tang, Yanan Cao, Zhenyu Zhang, Jiangxia
Cao, Fang Fang, Shi Wang, and Pengfei Yin. 2020.
HIN: hierarchical inference network for document-
level relation extraction. In Proceedings of KDD.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NIPS.

Patrick Verga, Emma Strubell, and Andrew McCallum.
2018. Simultaneously self-attending to all mentions
for full-abstract biological relation extraction. In
Proceedings of NAACL.
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